ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]      



Задача 52520

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по центрам описанной, вписанной и одной из вневписанных окружностей.

Прислать комментарий     Решение

Задача 54574

Темы:   [ Построение треугольников по различным точкам ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Постройте равнобедренный треугольник, если заданы основания его биссектрис.

Прислать комментарий     Решение

Задача 55588

Темы:   [ Построение треугольников по различным точкам ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по данным серединам двух его сторон и прямой, на которой лежит биссектриса, проведённая к третьей стороне.

Прислать комментарий     Решение


Задача 110759

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса угла ]
[ Симметрия помогает решить задачу ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

Прислать комментарий     Решение

Задача 54570

Темы:   [ Построение треугольников по различным точкам ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC, зная три точки A1, B1 и C1, в которых продолжения его высот пересекают описанную окружность.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .