Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 59]
С помощью циркуля и линейки постройте треугольник ABC по точкам A1, B1 и C1, симметричным ортоцентру треугольника относительно прямых BC, CA, AB.
Постройте треугольник ABC, зная три точки A1, B1 и C1, симметричные центру O описанной окружности этого треугольника относительно прямых BC, CA и AB.
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике провели высоту из одной вершины, биссектрису из другой и медиану из третьей, отметили точки их попарного пересечения, а затем всё, кроме этих отмеченных точек, стерли (три отмеченные точки различны, кроме того, известно, какая является чьим пересечением). Восстановите треугольник.
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике ABC на сторонах AC, BC и AB отметили точки D, E и F соответственно, так, что AD = AB, EC = DC, BF = BE. После этого стёрли всё, кроме точек E, F и D. Восстановите треугольник ABC.
Восстановите треугольник ABC по вершине B, центру тяжести и точке пересечения L симедианы, проведённой из вершины B, с описанной окружностью.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 59]