ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки K и L являются серединами боковых сторон AB и BC равнобедренного треугольника ABC. Точка M расположена на медиане AL так, что
AM : ML = 13 : 12.  Окружность с центром в точке M касается прямой AC и пересекает прямую KL в точках P и Q. Найдите периметр треугольника ABC, если  KL = 10,  PQ = 4.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1354]      



Задача 110902

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Точки K и L являются серединами боковых сторон AB и BC равнобедренного треугольника ABC. Точка M расположена на медиане AL так, что
AM : ML = 13 : 12.  Окружность с центром в точке M касается прямой AC и пересекает прямую KL в точках P и Q. Найдите периметр треугольника ABC, если  KL = 10,  PQ = 4.

Прислать комментарий     Решение

Задача 115308

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса угла ACB пересекает эти высоты в точках L и K соответственно.
Докажите, что середина отрезка KL равноудалена от точек A1 и B1.

Прислать комментарий     Решение

Задача 115337

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что  AC = BD,  2∠ACF = ∠ADB,  2∠CAF = ∠CDB.
Докажите, что  AD = CE.

Прислать комментарий     Решение

Задача 115349

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Каждый катет прямоугольного треугольника увеличили на единицу. Могла ли его гипотенуза увеличиться более, чем на   ?

Прислать комментарий     Решение

Задача 115774

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Приближения чисел ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Мальчик с папой стоят на берегу моря. Если мальчик встанет на цыпочки, его глаза будут на высоте 1 м от поверхности моря, а если сядет папе на плечи, то на высоте 2 м. Во сколько раз дальше он будет видеть во втором случае. (Найдите ответ с точностью до 0,1, радиус Земли считайте равным 6000 км.)

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .