ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 129]
В трапеции ABCD известно, что BAD = 45o, ADC = 90o. Окружность, центр которой лежит на отрезке AD, касается прямых AB, BC и CD. Найдите площадь трапеции, если радиус окружности равен R.
В трапеции ABCD известно, что BAD = 90o, ADC = 30o. Окружность, центр которой лежит на отрезке AD, касается прямых AB, BC и CD. Найдите площадь трапеции, если радиус окружности равен R.
В выпуклом четырёхугольнике ABCD биссектриса угла ABC пересекает сторону AD в точке M, а перпендикуляр, опущенный из вершины A на сторону BC, пересекает BC в точке N, причём BN = NC и AM = 2MD. Найдите стороны и площадь четырёхугольника ABCD, если его периметр равен 5 + , а угол BAD равен 90o и угол ABC равен 60o.
Площадь равнобедренной трапеции равна 32. Котангенс угла между диагональю и основанием равен 2. Найдите высоту трапеции.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 129] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|