Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Через каждую вершину неравнобедренного треугольника ABC проведён отрезок, разбивающий его на два треугольника с равными периметрами.
Верно ли, что все эти отрезки имеют разные длины?

Вниз   Решение


Пусть K , L и M – середины рёбер соответственно AD , A1B1 и CC1 прямоугольного параллелепипеда ABCDA1B1C1D1 , в котором AB = a , AA1 = b , AD = c . Найдите отношение суммы квадратов сторон треугольника KLM к квадрату диагонали параллелепипеда.

ВверхВниз   Решение


Сравните между собой наименьшие положительные корни многочленов  x2011 + 2011x – 1  и  x2011 – 2011x + 1.

ВверхВниз   Решение


Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

ВверхВниз   Решение


Найдите расстояние от центра грани единичного куба до вершин противоположной грани.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 87267

Темы:   [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 8,9

Найдите объём прямоугольного параллелепипеда, если его диагональ равна d , а ребра, исходящие из одной вершины относятся как m:n:p .
Прислать комментарий     Решение


Задача 87328

Темы:   [ Сферы (прочее) ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Внутренняя точка A шара радиуса r соединена с поверхностью шара тремя отрезками прямых, имеющими длину l и проведёнными под углом α друг к другу. Найдите расстояние точки A от центра шара.
Прислать комментарий     Решение


Задача 109233

Темы:   [ Прямая призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109294

Темы:   [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Пусть K , L и M – середины рёбер соответственно AD , A1B1 и CC1 прямоугольного параллелепипеда ABCDA1B1C1D1 , в котором AB = a , AA1 = b , AD = c . Найдите отношение суммы квадратов сторон треугольника KLM к квадрату диагонали параллелепипеда.
Прислать комментарий     Решение


Задача 111121

Темы:   [ Куб ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Найдите расстояние от центра грани единичного куба до вершин противоположной грани.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .