ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый многогранник ABCDFE имеет пять граней: CDF , ABE , BCFE , ADFE и ABCD . Ребро AB параллельно ребру CD . Точки K и L расположены соответственно на рёбрах AD и BC так, что отрезок KL делит площадь грани ABCD пополам. Точка M является серединой ребра EF и вершиной пирамиды MABCD , объём которой равен 6. Найдите объём пирамиды EKLF , если известно, что объём многогранника ABCDFE равен 19. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
Дан правильный шестиугольник ABCDEF со стороной a . Отрезок MN параллелен одной из сторон шестиугольника, равен его стороне и расположен на расстоянии h от его плоскости. Найдите объём многогранника ABCDEFMN .
Пусть r0 – радиус вневписанной сферы тетраэдра, касающейся
грани площади S0 , а S1 , S2 и S3 – площади остальных
граней тетраэдра. Докажите, что объём тетраэдра можно вычислить по
формуле V=
Выпуклый многогранник ABCDFE имеет пять граней: CDF , ABE , BCFE , ADFE и ABCD . Ребро AB параллельно ребру CD . Точки K и L расположены соответственно на рёбрах AD и BC так, что отрезок KL делит площадь грани ABCD пополам. Точка M является серединой ребра EF и вершиной пирамиды MABCD , объём которой равен 6. Найдите объём пирамиды EKLF , если известно, что объём многогранника ABCDFE равен 19.
Выпуклый многогранник KLMNFE имеет пять граней: KLE , MNF , KNFE , LMFE и KLMN . Точки A и B расположены соответственно на рёбрах KN и LM так, что отрезок AB делит площадь параллелограмма KLMN пополам. Точка D является серединой ребра EF и вершиной пирамиды DKLMN , объём которой равен 5. Найдите объём многогранника KLMNFE , если известно, что объём пирамиды EFAB равен 8.
Известно, что в некоторую пирамиду можно вписать шар. Докажите, что объём этой пирамиды равен трети произведения радиуса этого шара на полную поверхность пирамиды.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке