Страница:
<< 1 2 [Всего задач: 10]
|
|
Сложность: 4 Классы: 10,11
|
Даны правильная четырёхугольная пирамида
SABCD и цилиндр, центр
симметрии которого лежит на прямой
SO (
SO – высота пирамиды). Точка
F – середина ребра
SD , точка
E принадлежит апофеме
ST грани
BSC , причём
TE=3
ES . Прямоугольник, являющийся одним из осевых сечений
цилиндра, расположен так, что две его вершины лежат на прямой
AB , а одна
из двух других вершин лежит на прямой
EF . Найдите объём цилиндра, если
SO=3
,
AB=1
.
|
|
Сложность: 4 Классы: 10,11
|
Даны правильная четырёхугольная пирамида
SABCD и цилиндр, центр
симметрии которого лежит на прямой
SO (
SO – высота пирамиды). Точка
E – середина апофемы грани
BSC , точка
F принадлежит ребру
SD , причём
SF=2
FD . Прямоугольник, являющийся одним из
осевых сечений цилиндра, расположен так, что две его вершины лежат на
прямой
AB , а одна из двух других вершин лежит на прямой
EF . Найдите
объём цилиндра, если
SO=12
,
AB=4
.
|
|
Сложность: 4 Классы: 10,11
|
Даны правильная четырёхугольная пирамида
SABCD и конус, центр
основания которого лежит на прямой
SO (
SO – высота пирамиды). Точка
E лежит на ребре
SD , причём
SE=2
ED , точка
F –
середина ребра
AD . Треугольник, являющийся одним из
осевых сечений конуса, расположен так, что две его вершины лежат на прямой
CD , а третья – на прямой
EF . Найдите объём конуса, если
AB=1
,
SO= .
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что плоскость, проходящая через середины двух
противоположных рёбер любой треугольной пирамиды, делит её
объём пополам.
|
|
Сложность: 5 Классы: 10,11
|
Два правильных равных треугольника расположены в пространстве в параллельных
плоскостях
P1 и
P2, причём отрезок, соединяющий их центры,
перпендикулярен плоскостям. Найти геометрическое место точек, являющихся
серединами отрезков, соединяющих точки одного треугольника с точками другого
треугольника.
Страница:
<< 1 2 [Всего задач: 10]