ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основание прямой призмы ABCABC₁ ─ равнобедренный треугольник ABC, в котором AB = BC = 5, ∠ABC = 2 arcsin ⅗. Плоскость, перпендикулярная прямой AC, пересекает рёбра AC и AC₁ в точках D и E соответственно, причём AD = ⅓AC, EC₁ = ⅓AC₁. Найдите площадь сечения призмы этой плоскостью.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 64]      



Задача 110929

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 8,9

Основание прямой призмы ABCA1B1C1 – треугольник ABC , в котором AB=BC=5 , AC=6 . Высота призмы равна . На рёбрах AC , AB и A1C1 выбраны соответственно точки D , E и D1 так, что AD=AC , AE=BE , C1D1= A1C1 , и через эти точки проведена плоскость Π . Найдите: 1) площадь сечения призмы плоскостью Π ; 2) угол между плоскостью Π и плоскостью ABC ; 3) расстояния от точек A1 и A до плоскости Π .
Прислать комментарий     Решение


Задача 110930

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 8,9

Основание прямой призмы ABCA1B1C1 – треугольник ABC , в котором AB=BC=5 , AC=6 . Высота призмы равна . На рёбрах A1C1 , A1B1 и AC выбраны соответственно точки D1 , E1 и D так, что A1D1=A1C1 , A1E1=B1E1 , CD= AC , и через эти точки проведена плоскость Π . Найдите: 1) площадь сечения призмы плоскостью Π ; 2) угол между плоскостью Π и плоскостью ABC ; 3) расстояния от точек A1 и A до плоскости Π .
Прислать комментарий     Решение


Задача 111286

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCABC₁ ─ равнобедренный треугольник ABC, в котором AB = BC = 5, ∠ABC = 2 arcsin ⅗. Плоскость, перпендикулярная прямой AC, пересекает рёбра AC и AC₁ в точках D и E соответственно, причём AD = ⅓AC, EC₁ = ⅓AC₁. Найдите площадь сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 111288

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCABC₁ ─ равнобедренный треугольник ABC, в котором AC = CB = 2, ∠ACB = 2 arcsin ⁴⁄₅. Плоскость, перпендикулярная прямой AB, пересекает рёбра AB и AB₁ в точках K и L соответственно, причём AK = ⁷⁄₁₆AB, LB₁ = ⁷⁄₁₆AB₁. Найдите площадь сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 79626

Темы:   [ Неравенства с площадями ]
[ Векторы помогают решить задачу ]
[ Площадь и ортогональная проекция ]
[ Скалярное произведение ]
[ Тетраэдр (прочее) ]
[ Правильный тетраэдр ]
Сложность: 5
Классы: 10,11

Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1P2S2 + P3S3 + P4S4.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .