Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 65]
|
|
Сложность: 4 Классы: 7,8,9
|
На окружной железной дороге n станций. Иногда дежурные по станциям связываются друг с другом по радио. В каждый момент времени сеанс связи ведут только два человека. За сутки между каждыми двумя станциями произошёл ровно один радиосеанс. Для каждой станции (если учесть только её сеансы) оказалось, что она общалась с другими станциями по очереди в порядке их расположения на железной дороге (по или против часовой стрелки, у разных станций эти направления могут быть разными), начиная с одной из соседних и заканчивая другой. Чему может равняться n?
|
|
Сложность: 4 Классы: 8,9,10
|
Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?
|
|
Сложность: 4+ Классы: 9,10,11
|
Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?
|
|
Сложность: 5- Классы: 8,9,10,11
|
В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?
|
|
Сложность: 5 Классы: 10,11
|
P и Q – подмножества множества выражений вида (a1, a2, ..., an), где ai – натуральные числа, не превосходящие данного натурального числа k (таких выражений всего kn). Для каждого элемента (p1, ..., pn) множества P и каждого элемента (q1, ..., qn) множества Q существует хотя бы один такой номер m, что pm = qm. Докажите, что хотя бы одно из множеств P и Q состоит не более чем из kn–1 элементов для
а) k = 2 и любого натурального n;
б) n = 2 и любого натурального k > 1;
в) произвольного натурального n и произвольного натурального k > 1.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 65]