ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 1110]      



Задача 111347

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 7,8,9,10,11

На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки?

Прислать комментарий     Решение

Задача 111359

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9

В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

Прислать комментарий     Решение

Задача 115381

Темы:   [ Текстовые задачи (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7,8

Маленькие детки кушали конфетки. Каждый съел на 7 конфет меньше, чем все остальные вместе, но все же больше одной конфеты.
Сколько всего конфет было съедено?

Прислать комментарий     Решение

Задача 115490

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 5,6,7,8

Из пункта А в пункт В вышел пешеход. Одновременно с ним из В в А выехал велосипедист. Через час пешеход оказался ровно посередине между пунктом А и велосипедистом. Ещё через 15 минут они встретились, и каждый продолжил свой путь.
Сколько времени потратил пешеход на путь из А до В? (Скорости пешехода и велосипедиста постоянны.)

Прислать комментарий     Решение

Задача 116005

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 8,9,10,11

В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .