Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

У Юры есть калькулятор, который позволяет умножать число на 3, прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3. Как на этом калькуляторе получить из числа 1 число 11?

Вниз   Решение


Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13.

ВверхВниз   Решение


Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре?

ВверхВниз   Решение


Маленькие детки кушали конфетки. Каждый съел на 7 конфет меньше, чем все остальные вместе, но все же больше одной конфеты.
Сколько всего конфет было съедено?

ВверхВниз   Решение


Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету?

ВверхВниз   Решение


На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки?

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?

ВверхВниз   Решение


В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 1119]      



Задача 109962

Темы:   [ Числовые таблицы и их свойства ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9


Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.

Прислать комментарий     Решение

Задача 111248

Темы:   [ Турниры и турнирные таблицы ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Автор: Лифшиц Ю.

Шестнадцать футбольных команд из шестнадцати стран провели турнир – каждая команда сыграла с каждой из остальных по одному матчу.
Могло ли оказаться так, что каждая команда сыграла во всех странах, кроме своей родины?

Прислать комментарий     Решение

Задача 111249

Темы:   [ Задачи на движение ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 7,8,9

Пройдя 4/9 длины моста, пешеход заметил, что его догоняет машина, еще не въехавшая на мост. Тогда он повернул назад и встретился с ней у начала моста. Если бы он продолжил свое движение, то машина догнала бы его у конца моста. Найдите отношение скоростей машины и пешехода.

Прислать комментарий     Решение

Задача 111323

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7

В кубке Водоканала по футболу участвовали команды "Помпа", "Фильтр", "Насос" и "Шлюз". Каждая команда сыграла с каждой из остальных по одному разу (за победу давалось 3 очка, за ничью – 1, за проигрыш – 0). Команда "Помпа" набрала больше всех очков, команда "Шлюз" – меньше всех. Могло ли оказаться так, что "Помпа" обогнала "Шлюз" всего на 2 очка?

Прислать комментарий     Решение

Задача 111347

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 7,8,9,10,11

На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки?

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 1119]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .