ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

   Решение

Задачи

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 1110]      



Задача 110923

Темы:   [ Числовые таблицы и их свойства ]
[ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Впишите в клетки квадрата 3×3 числа так, что если в качестве коэффициентов a, b, c  (a ≠ 0)  квадратного уравнения  ax² + bx + c = 0  взять числа из любой строки (слева направо), столбца или диагонали (сверху вниз) квадрата, то у получившегося уравнения будет хотя бы один корень.

Прислать комментарий     Решение

Задача 111789

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Инварианты ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8

На шахматной доске расставлены во всех клетках 32 белых и 32 черных пешки. Пешка может бить пешки противоположного цвета, делая ход по диагонали на одну клетку и становясь на место взятой пешки (белые пешки могут бить только вправо-вверх и влево-вверх, а чёрные – только влево-вниз и вправо-вниз). Другим образом пешки ходить не могут. Какое наименьшее количество пешек может остаться на доске?

Прислать комментарий     Решение

Задача 111811

Темы:   [ Числовые таблицы и их свойства ]
[ Процессы и операции ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9,10

В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

Прислать комментарий     Решение

Задача 111851

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

В клетках таблицы 10×10 произвольно расставлены натуральные числа от 1 до 100, каждое по одному разу. За один ход разрешается поменять местами любые два числа. Докажите, что за 35 ходов можно добиться того, чтобы сумма каждых двух чисел, стоящих в клетках с общей стороной, была составной.

Прислать комментарий     Решение

Задача 111857

Темы:   [ Числовые таблицы и их свойства ]
[ Вспомогательная раскраска (прочее) ]
[ Подсчет двумя способами ]
[ Аналитический метод в геометрии ]
Сложность: 4-
Классы: 8,9,10

В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?

Прислать комментарий     Решение

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .