|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Дано шестизначное число abcdef, причём abc – def делится на 7. Докажите, что и само число делится на 7. На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке? Существуют ли а) 6, б)15, в) 1000 таких различных натуральных чисел, что для любых двух a и b из них сумма a + b делится на разность a − b? Дан треугольник ABC. Из точек A1, B1 и C1, лежащих на прямых BC, AC и AB соответственно, восставлены перпендикуляры к этим прямым. |
Страница: 1 2 3 >> [Всего задач: 15]
Докажите, что перпендикуляры, опущенные из точек A1, B1, C1 на стороны BC, CA, AB треугольника ABC, пересекаются в одной точке тогда и только тогда, когда A1B² + C1A² + B1C² = B1A² + A1C² + C1B² (теорема Карно).
Дан треугольник ABC. Из точек A1, B1 и C1, лежащих на прямых BC, AC и AB соответственно, восставлены перпендикуляры к этим прямым.
Вневписанные окружности треугольника ABC касаются сторон BC, AC и AB в точках A1, B1
и C1 соответственно.
Дан правильный треугольник ABC и произвольная точка D. Точки A1, B1 и C1 – центры окружностей, вписанных в треугольники BCD, CAD и ABD соответственно. Докажите, что перпендикуляры, опущенные из вершин A, B и C на прямые соответственно B1C1, A1C1 и A1B1, пересекаются в одной точке.
Докажите, что если перпендикуляры, опущенные из точек A1, B1 и C1 на прямые BC, AC и AB соответственно, пересекаются в одной точке, то и перпендикуляры, опущенные из точек A, B и C на прямые соответственно B1C1, A1C1 и A1B1, также пересекаются в одной точке.
Страница: 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|