ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Полицейский участок расположен на прямой дороге, бесконечной в обе стороны. Некто угнал старую полицейскую машину, максимальная скорость которой составляет 90% от максимальной скорости новой машины. В некоторый момент в участке спохватились и послали вдогонку полицейского на новой полицейской машине. Однако вот беда: полицейский не знал, ни когда машина была угнана, ни в каком направлении вдоль дороги уехал угонщик. Сможет ли полицейский поймать угонщика?

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1027]      



Задача 111690

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Наглядная геометрия в пространстве ]
Сложность: 4-
Классы: 8,9,10

Пространство разбито на одинаковые кубики. Верно ли, что для каждого из этих кубиков обязательно найдётся другой, имеющий с ним общую грань?

Прислать комментарий     Решение

Задача 115733

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Выпуклые многоугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 9,10

При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?

Прислать комментарий     Решение

Задача 116033

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4-
Классы: 9,10,11

Автор: Стунжас Л.

Банкомат обменивает монеты: дублоны на пистоли и наоборот. Пистоль стоит s дублонов, а дублон – 1/s пистолей, где s не обязательно целое. В банкомат можно вбросить любое число монет одного вида, после чего он выдаст в обмен монеты другого вида, округляя результат до ближайшего целого числа (если ближайших чисел два, выбирается большее).

  а) Может ли так быть, что обменяв сколько-то дублонов на пистоли, а затем обменяв полученные пистоли на дублоны, мы получим больше дублонов, чем было вначале?

  б) Если да, то может ли случиться, что полученное число дублонов ещё увеличится, если проделать с ними такую же операцию?

Прислать комментарий     Решение

Задача 116035

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Задачи на движение ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Полицейский участок расположен на прямой дороге, бесконечной в обе стороны. Некто угнал старую полицейскую машину, максимальная скорость которой составляет 90% от максимальной скорости новой машины. В некоторый момент в участке спохватились и послали вдогонку полицейского на новой полицейской машине. Однако вот беда: полицейский не знал, ни когда машина была угнана, ни в каком направлении вдоль дороги уехал угонщик. Сможет ли полицейский поймать угонщика?

Прислать комментарий     Решение

Задача 116047

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 10,11

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).

  а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным?

  б) Пусть стёрлись k записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем k всегда можно однозначно восстановить стёршиеся записи?

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .