Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 1027]
|
|
Сложность: 4- Классы: 8,9,10
|
На доске написаны три натуральных числа, не превосходящих 40. За один ход
можно увеличить любое из написанных чисел на число процентов, равное одному из
двух оставшихся чисел, если в результате получится целое число. Существуют ли такие
исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше
2011?
Два муравья проползли каждый по своему замкнутому маршруту на доске 7×7. Каждый полз только по сторонам клеток доски и побывал в каждой из 64 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?
|
|
Сложность: 4- Классы: 8,9,10,11
|
На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.
Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?
|
|
Сложность: 4- Классы: 10,11
|
Из N прямоугольных плиток (возможно, неодинаковых) составлен прямоугольник с неравными сторонами. Докажите, что можно разрезать каждую плитку на две части так, чтобы из N частей можно было сложить квадрат, а из оставшихся N частей – прямоугольник.
Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем
а) на 50-й день?
б) на 25-й день?
Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 1027]