ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадрат ABCD. На стороне AD внутрь квадрата построен равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что  CE = CF.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 603]      



Задача 115976

Темы:   [ Вневписанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 7,8,9

Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Прислать комментарий     Решение

Задача 116149

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 7,8,9

Дан квадрат ABCD. На стороне AD внутрь квадрата построен равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что  CE = CF.

Прислать комментарий     Решение

Задача 53312

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На сторонах AC и BC треугольника ABC взяты точки C1 и C2. Докажите, что треугольник ABC равнобедренный, если треугольники ABC1 и BAC2 равны.

Прислать комментарий     Решение

Задача 53314

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Докажите, что у равнобедренного треугольника:
  а) биссектрисы, проведённые из вершин при основании, равны;
  б) медианы, проведённые из тех же вершин, также равны.

Прислать комментарий     Решение

Задача 53316

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3-
Классы: 8,9

Точки A, B, C, D лежат на одной прямой, причём отрезки AB и CD имеют общую середину.
Докажите, что, если треугольник ABE равнобедренный с основанием AB, то треугольник CDE тоже равнобедренный с основанием CD.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .