Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 604]      



Задача 53307

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

От вершины C равнобедренного треугольника ABC с основанием AB, отложены равные отрезки: CA1 на стороне CA, и CB1 на стороне CB.
Докажите равенство треугольников:
  1) CAB1 и CBA1;
  2) ABB1 и BAA1.

Прислать комментарий     Решение

Задача 53308

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

На основании AB равнобедренного треугольника ABC даны точки A1 и B1. Известно, что   AB1 = BA1.
Докажите, что треугольник AB1C равен треугольнику BA1C.

Прислать комментарий     Решение

Задача 53329

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.

Прислать комментарий     Решение

Задача 53338

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 2+
Классы: 8,9

Отрезки AB и CD пересекаются под прямым углом и  AC = AD.  Докажите, что  BC = BD  и  ∠ACB = ∠ADB.

Прислать комментарий     Решение

Задача 53397

Темы:   [ Периметр треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Медиана треугольника делит пополам его периметр. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .