ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 769]      



Задача 110982

Темы:   [ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В равнобедренный треугольник ABC  (AB = BC)  вписана окружность. Прямая, параллельная стороне AB и касающаяся окружности, пересекает сторону AC в такой точке M, что  MC = ⅖ AC.  Найдите радиус окружности, если периметр треугольника ABC равен 20.

Прислать комментарий     Решение

Задача 110984

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В равнобедренный треугольник ABC  (AB = BC)  вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что  AN = ⅜ AB.  Найдите радиус окружности, если площадь треугольника ABC равна 12.

Прислать комментарий     Решение

Задача 111855

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что  ∠ILA = ∠IMB,  ∠IKC = ∠INB.  Докажите, что
AM + KL + CN = AC.

Прислать комментарий     Решение

Задача 115563

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Окружности радиусов r и R касаются внешним образом в точке K. Прямая касается этих окружностей в различных точках A и B.
Найдите площадь треугольника AKB.

Прислать комментарий     Решение

Задача 116169

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .