ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  S ≠ A,  AB = BS.  В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 181]      



Задача 116520

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  S ≠ A,  AB = BS.  В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Задача 55358

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Пусть M и N — точки пересечения медиан треугольников ABC и PQR соответственно. Докажите, что $ \overrightarrow{MN} $ = $ {\frac{1}{3}}$($ \overrightarrow{AP} $ + $ \overrightarrow{BQ} $ + $ \overrightarrow{CR} $).

Прислать комментарий     Решение


Задача 55360

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC и точка M. Известно, что $ \overrightarrow{MA} $ + $ \overrightarrow{MB} $ + $ \overrightarrow{MC} $ = $ \overrightarrow{0}$. Докажите, что M — точка пересечения медиан треугольника ABC.

Прислать комментарий     Решение


Задача 77893

Темы:   [ Шестиугольники ]
[ Теорема о группировке масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 8,9

В произвольном (выпуклом — прим. ред.) шестиугольнике соединены через одну середины сторон. Докажите, что точки пересечения медиан двух образовавшихся треугольников совпадают.
Прислать комментарий     Решение


Задача 64701

Темы:   [ Четырехугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что  AB = CD.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .