ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 488]      



Задача 116560

Темы:   [ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?

Прислать комментарий     Решение

Задача 116668

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4-
Классы: 7,8

Автор: Фольклор

В каждой клетке таблицы 10×10 записано число. В каждой строке подчеркнули наибольшее число (или одно из наибольших, если их несколько), а в каждом столбце – наименьшее (или одно из наименьших). Оказалось, что все подчёркнутые числа подчёркнуты ровно два раза. Докажите, что все числа, записанные в таблице, между собой равны.

Прислать комментарий     Решение

Задача 117008

Темы:   [ Объединение, пересечение и разность множеств ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 5,6,7

Автор: Фольклор

Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.

Прислать комментарий     Решение

Задача 117017

Темы:   [ Объединение, пересечение и разность множеств ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 5,6,7

Автор: Фольклор

В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.

Прислать комментарий     Решение

Задача 78618

Темы:   [ Покрытия ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 4
Классы: 7,8,9

В четырёх заданных точках на плоскости расположены прожекторы, каждый из которых может освещать прямой угол. Стороны этих углов могут быть направлены на север, юг, запад или восток. Доказать, что эти прожекторы можно направить так, что они осветят всю плоскость.
Прислать комментарий     Решение


Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .