ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны положительные числа b и c. Докажите неравенство (b – c)2011(b + c)2011(c – b)2011 ≥ (b2011 – c2011)(b2011 + c2011)(c2011 – b2011). Решение |
Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 1007]
Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1, ..., n так, что в каждой строке и в каждом столбце все числа различны. Назовём клетку хорошей, если число в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которой во всех строках одинаковое количество хороших клеток?
На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Даны положительные числа b и c. Докажите неравенство (b – c)2011(b + c)2011(c – b)2011 ≥ (b2011 – c2011)(b2011 + c2011)(c2011 – b2011).
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
В некоторой стране 30 городов, причём каждый соединён с каждым дорогой.
Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 1007] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|