ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1007]      



Задача 78514

Темы:   [ Целочисленные решетки (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

На листе бумаги проведено 11 горизонтальных и 11 вертикальных прямых, точки пересечения которых называются узлами, звеном" мы будем называть отрезок прямой, соединяющий два соседних узла одной прямой. Какое наименьшее число звеньев надо стереть, чтобы после этого в каждом узле сходилось не более трёх звеньев?

Прислать комментарий     Решение

Задача 78604

Темы:   [ Уравнения в целых числах ]
[ Раскладки и разбиения ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10

Остап Бендер организовал в городе Фуксе раздачу слонов населению. На раздачу явились 28 членов профсоюза и 37 не членов, причём Остап раздавал слонов поровну всем членам профсоюза и поровну – не членам. Оказалось, что существует лишь один способ такой раздачи (так, чтобы раздать всех слонов). Какое наибольшее число слонов могло быть у О. Бендера? (Предполагается, что каждому из пришедших достался хотя бы один слон.)

Прислать комментарий     Решение

Задача 98089

Темы:   [ Степень вершины ]
[ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Автор: Фомин С.В.

В королевстве восемь городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в любой другой, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более k дорог. При каких k это возможно?

Прислать комментарий     Решение

Задача 98230

Темы:   [ Принцип Дирихле (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
Докажите, что у одного из дедов в этой школе учится не менее 14 внуков и внучек.

Прислать комментарий     Решение

Задача 98387

Темы:   [ Геометрия на клетчатой бумаге ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4-
Классы: 7,8,9

Квадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей?

Прислать комментарий     Решение

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .