ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В центре круглого бассейна плавает ученик. Внезапно к бассейну подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать? Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав? Для натурального a обозначим через P(a) наибольший простой делитель числа a² + 1. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 187]
Каким может быть произведение нескольких различных простых чисел, если оно кратно каждому из них, уменьшенному на 1?
Пусть p – простое число и представление числа n
в p-ичной системе имеет вид: n = akpk + ak–1pk–1 + ... + a1p1 + a0.
Дано равенство (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1), где a, n, l и все показатели степени – натуральные числа, причём a > 1.
Для натурального a обозначим через P(a) наибольший простой делитель числа a² + 1.
Натуральное число b назовём удачным, если для любого натурального a, такого, что a5 делится на b², число a² делится на b.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 187]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке