ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть
В правильной треугольной пирамиде SABC ( S – вершина)
сторона основания равна 6, высота пирамиды SH равна На столе лежат несколько тонких спичек одинаковой длины. Всегда ли можно раскрасить их концы а) в 2, б) в 3 цвета так, чтобы два конца каждой спички были разных цветов, а каждые два касающихся конца (разных спичек) – одного и того же цвета? Основанием пирамиды служит треугольник со сторонами 9, 12 и 15, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 60o . Какой наибольший объём может иметь такая пирамида? Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD. Отрезок AE является медианой равнобедренного треугольника ABC ( AB= AC) . Окружность проходит через точки A , C , E и пересекает сторону AB в точке D так, что AD:AB=7:9 . Найдите отношение длины окружности к периметру треугольника ABC . В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]
Каждому городу в некоторой стране присвоен индивидуальный номер. Имеется список, в котором для каждой пары номеров указано, соединены города с данными номерами железной дорогой или нет. Оказалось, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, но список по-прежнему будет верным. Верно ли, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, город с номером N получит номер M, но список по-прежнему будет верным?
В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?
Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)
В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.
В Чикаго орудует 36 преступных банд, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём каждые два гангстера состоят в разных наборах банд. Известно, что ни один гангстер не состоит в двух бандах, враждующих между собой. Кроме того, оказалось, что каждая банда, в которой не состоит некоторый гангстер, враждует с какой-то бандой, в которой данный гангстер состоит. Какое наибольшее количество гангстеров может быть в Чикаго?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке