ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Существует ли трапеция, в которой каждая диагональ разбивает её на два равнобедренных треугольника?

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 9702]      



Задача 102394

Тема:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3-
Классы: 8,9

На продолжении стороны KM треугольника KLM за точку K взята точка K1, а на стороне KL взята точка L1, длина отрезка K1M равна 116% длины стороны KM, а длина отрезка KL1 равна 75% длины стороны KL. Сколько процентов площади треугольника KLM составляет площадь треугольника K1L1M?

Прислать комментарий     Решение

Задача 115380

Темы:   [ Наглядная геометрия ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 5,6,7

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.


После этого колеса повернули. Новый вид сверху изображен на рисунке справа.
Могло ли колес быть:  а) три;  б) два?

Прислать комментарий     Решение

Задача 115924

Тема:   [ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3-
Классы: 8,9

Сторона треугольника равна   ,   углы, прилежащие к ней, равны 75° и 60°.
Найдите отрезок, соединяющий основания высот, проведённых из вершин этих углов.

Прислать комментарий     Решение

Задача 116469

Темы:   [ Вычисление площадей ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 5,6

Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части.

Прислать комментарий     Решение

Задача 116795

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

Существует ли трапеция, в которой каждая диагональ разбивает её на два равнобедренных треугольника?

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .