ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 9702]      



Задача 55176

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8,9

В треугольнике две стороны равны 3,14 и 0,67. Найдите третью сторону, если известно, что её длина является целым числом.

Прислать комментарий     Решение


Задача 55263

Тема:   [ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что AC = 13, AB = 14, BC = 15. На стороне BC взята точка M, причём CM : MB = 1 : 2. Найдите AM.

Прислать комментарий     Решение


Задача 103735

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.

Прислать комментарий     Решение


Задача 32837

Темы:   [ Неравенство треугольника (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?
Прислать комментарий     Решение


Задача 34877

Темы:   [ Геометрические неравенства (прочее) ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 7,8,9

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .