ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Текстовые задачи
>>
Таблицы и турниры
>>
Турниры и турнирные таблицы
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по х очков. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110]
В шахматном турнире было 12 участников (каждый сыграл с каждым по одному разу). По итогам турнира оказалось, что есть 9 участников, каждый из которых набрал не более 4 очков. Известно, что Петя набрал ровно 9 очков. Как он сыграл с каждым из двух остальных шахматистов? (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)
В турнире по волейболу n команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть Р – сумма квадратов чисел, задающих количество побед каждой команды, Q – сумма квадратов чисел, задающих количество их поражений. Докажите, что P = Q.
Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по х очков.
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?
В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1 очко, ничья – ½ очка, поражение – 0 очков.)
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|