ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M . Окружность, построенная на большей боковой стороне AB прямоугольной трапеции ABCD как на диаметре, пересекает основание AD в его середине. Известно, что AB=10 , CD=6 . Найдите среднюю линию трапеции. За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом. Дан равнобедренный треугольник ABC (AB = AC). На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что BD = AB. Окружность с центром на стороне AC равнобедренного треугольника ABC (AB = BC) касается сторон AB и BC.
В равнобочной трапеции ABCD угол при основании AD равен α ,
боковая сторона AB равна b . Окружность, касающаяся сторон AB и AD и
проходящая через вершину C , пересекает стороны BC и CD в точках
M и N соответственно. Найдите BM , если Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник. |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1358]
Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.
Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.
ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что AB = 2AD. Точки M и N на стороне AC таковы, что AM = NC. На продолжении стороны CB за точку B взята такая точка K, что CN = BK. Найдите угол между прямыми NK и DM.
В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.
Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1358]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке