ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 603]      



Задача 116667

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 7,8

В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 116895

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Свойства симметрий и осей симметрии ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC.

Прислать комментарий     Решение

Задача 32886

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Треугольник ABC равнобедренный  (AB = BC).  Точка M – середина стороны AB, точка P – середина отрезка CM, точка N делит сторону BC в отношении  3 : 1  (считая от вершины B). Докажите, что  AP = MN.

Прислать комментарий     Решение

Задача 53152

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Подобные треугольники (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3+
Классы: 8,9

Радиус вписанной в треугольник ABC окружности равен 4, причём  AC = BC.  На прямой AB взята точка D, удалённая от прямых AC и BC на расстояния 11 и 3 соответственно. Найдите косинус угла DBC.

Прислать комментарий     Решение

Задача 53180

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства касательной ]
[ Симметрия помогает решить задачу ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В равнобедренный треугольник ABC  (AC = BC)  вписана окружность радиуса 3. Прямая l касается этой окружности и параллельна прямой AC. Расстояние от точки B до прямой l равно 3. Найдите расстояние между точками, в которых данная окружность касается сторон AC и BC.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .