ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Бурбаки Н.

Учащиеся одной школы часто собираются группами и ходят в кафе-мороженое. После такого посещения они ссорятся настолько, что никакие двое из них после этого вместе мороженое не едят. К концу года выяснилось, что в дальнейшем они могут ходить в кафе-мороженое только поодиночке. Докажите, что если число посещений было к этому времени больше 1, то оно не меньше числа учащихся в школе.

Вниз   Решение


а) Серединный перпендикуляр к биссектрисе AD треугольника ABC пересекает прямую BC в точке E. Докажите, что  BE : CE = c2 : b2.
б) Докажите, что точки пересечения серединных перпендикуляров к биссектрисам треугольников и продолжений соответствующих сторон лежат на одной прямой.

ВверхВниз   Решение


В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

ВверхВниз   Решение


Даны точки A и B. Найдите геометрическое место точек, расстояние от каждой из которых до точки A больше, чем расстояние до точки B.

ВверхВниз   Решение


Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника — S. Доказать, что S$ \le$17, 5.

ВверхВниз   Решение


Малая теорема Ферма. Пусть p – простое число и p не делит a. Тогда  ap–1 ≡ 1 (mod p).
Докажите теорему Ферма, разлагая  (1 + 1 + ... + 1)p  посредством полиномиальной теоремы (см. задачу 60400).

ВверхВниз   Решение


В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
  а) за 5 или менее;
  б) за 4 или менее;
  в) за 3 или менее таких перегибания?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 57863

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что окружность при осевой симметрии переходит в окружность.
Прислать комментарий     Решение


Задача 57864

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.
Прислать комментарий     Решение


Задача 57865

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.
Прислать комментарий     Решение


Задача 57866

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.
Прислать комментарий     Решение


Задача 116962

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
  а) за 5 или менее;
  б) за 4 или менее;
  в) за 3 или менее таких перегибания?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .