|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Бился Иван-Царевич со Змеем Горынычем, трёхглавым и трёххвостым. Одним ударом он мог срубить либо одну голову, либо один хвост, либо две головы, либо два хвоста. Но, если срубить один хвост, то вырастут два; если срубить два хвоста – вырастет голова; если срубить голову, то вырастает новая голова, а если срубить две головы, то не вырастет ничего. Как должен действовать Иван-Царевич, чтобы срубить Змею все головы и все хвосты как можно быстрее? Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали. Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии. Укажите неравносторонний треугольник, который можно разделить на три равных треугольника. В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 1 и 3. Точка K делит сторону AC в отношении 7:1, считая от точки A. Что больше: длина AC или длина BK?
В окружности провели диаметр AB и параллельную ему хорду CD, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол CAB. В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 5 и 6. Точка K делит сторону AC в отношении 3:1, считая от точки A, AH - высота треугольника ABC. Что больше: 2 или отношение длины BK к длине AH?
В прямоугольнике ABCD длины отрезков AB и BD равны соответственно 2 и
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в каждом столбце меньше 1035.
Два квадрата и равнобедренный треугольник расположены так, как показано на рисунке (вершина K большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой.
В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что AB = CD.
64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.
Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|