ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?

   Решение

Задачи

Страница: << 252 253 254 255 256 257 258 >> [Всего задач: 1308]      



Задача 73627

Темы:   [ Классическая комбинаторика (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Текстовые задачи (прочее) ]
[ Формула включения-исключения ]
Сложность: 3+
Классы: 7,8,9

Петя собирается все 90 дней каникул провести в деревне и при этом каждый второй день (то есть через день) ходить купаться на озеро, каждый третий – ездить в магазин за продуктами, а каждый пятый день – решать задачи по математике. (В первый день Петя сделал и первое, и второе, и третье и очень устал.) Сколько будет у Пети "приятных" дней, когда нужно будет купаться, но не нужно ни ездить в магазин, ни решать задачи? Сколько "скучных", когда совсем не будет никаких дел?

Прислать комментарий     Решение

Задача 73704

Темы:   [ Числовые таблицы и их свойства ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Пусть k и n – натуральные числа,  k ≤ n.  Расставьте первые n² натуральных чисел в таблицу n×n так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в k-м столбце была  а) наименьшей;  б) наибольшей.

Прислать комментарий     Решение

Задача 98200

Темы:   [ Десятичная система счисления ]
[ Индукция (прочее) ]
[ Последовательности (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10

Автор: Анджанс А.

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого n включительно:   12345678910111213...(n).
Существует ли такое n, что в этой записи все десять цифр встречаются одинаковое количество раз?
Прислать комментарий     Решение


Задача 117003

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Кооперативные алгоритмы ]
Сложность: 3+
Классы: 5,6,7

Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?

Прислать комментарий     Решение

Задача 61513

Темы:   [ Раскладки и разбиения ]
[ Двоичная система счисления ]
[ Четность и нечетность ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4-
Классы: 8,9,10,11

Придумайте какое-либо взаимно-однозначное соответствие между разбиениями натурального числа на различные и на нечётные слагаемые.

Прислать комментарий     Решение

Страница: << 252 253 254 255 256 257 258 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .