ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что дробь несократима ни при каком натуральном n.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 125]      



Задача 105120

Темы:   [ Задачи на проценты и отношения ]
[ Объединение, пересечение и разность множеств ]
[ Обыкновенные дроби ]
Сложность: 3-
Классы: 7,8,9

На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?

Прислать комментарий     Решение

Задача 30412

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Докажите, что дробь несократима ни при каком натуральном n.

Прислать комментарий     Решение

Задача 34922

Темы:   [ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Обыкновенные дроби ]
Сложность: 3

Пусть p – простое число, большее 2, а  m/n = 1 + ½ + ⅓ + ... + 1/p–1.  Докажите, что m делится на p.

Прислать комментарий     Решение

Задача 76502

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Доказать, что при любом целом положительном n сумма     больше ½.

Прислать комментарий     Решение

Задача 88321

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Докажите, что  .

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .