Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 127]      



Задача 76502

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Доказать, что при любом целом положительном n сумма     больше ½.

Прислать комментарий     Решение

Задача 88321

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Докажите, что  .

Прислать комментарий     Решение

Задача 109458

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Средние величины ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

Прислать комментарий     Решение

Задача 60504

Темы:   [ Алгоритм Евклида ]
[ Тождественные преобразования ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

При каких целых $n$ число
  а) $\frac{n^4+3}{n^2+n+1}$;   б) $\frac{n^3+n+1}{n^2-n+1}$   также будет целым?

Прислать комментарий     Решение

Задача 66179

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .