ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1006]
В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы было четыре телефона, каждый из которых соединен с тремя другими, восемь телефонов, каждый из которых соединен с шестью, и три телефона, каждый из которых соединен с пятью другими?
В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Имеется группа островов, соединённых мостами так, что от каждого острова можно добраться до любого другого. Турист обошёл все острова, пройдя по каждому мосту ровно один раз. На острове Троекратном он побывал трижды. Сколько мостов ведёт с Троекратного, если турист
а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1006] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|