Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Вниз   Решение


Известно, что в тетраэдре две пары скрещивающихся ребер перепндикулярны. Докажите, что и третья пара скрещивающихся ребер обладает этим свойством.

ВверхВниз   Решение


Основанием пирамиды служит треугольник со сторонами 9, 12 и 15, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 60o . Какой наибольший объём может иметь такая пирамида?

ВверхВниз   Решение


Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки.
Можно ли обойти её ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?

ВверхВниз   Решение


Стороны синего и зеленого правильных треугольников соответственно параллельны. Периметр синего треугольника равен 4, а периметр зеленого треугольника равен 5. Найдите периметр шестиугольника, полученного в пересечении этих треугольников.

ВверхВниз   Решение


Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.

ВверхВниз   Решение


Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

ВверхВниз   Решение


Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

ВверхВниз   Решение


Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]      



Задача 30696

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

Прислать комментарий     Решение

Задача 30698

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Прислать комментарий     Решение

Задача 35628

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 9,10

Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

Прислать комментарий     Решение

Задача 60421

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

Прислать комментарий     Решение

Задача 35748

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 7,8

Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .