Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

Вниз   Решение


Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

ВверхВниз   Решение


Известно, что число a положительно, а неравенство  1 < xa < 2  имеет ровно три решения в целых числах.
Сколько решений в целых числах может иметь неравенство  2 < xa < 3 ?

ВверхВниз   Решение


Имеется несколько камней, масса каждого из которых не превосходит 2 кг, а общая масса равна 100 кг. Из них выбирается несколько камней, суммарная масса которых отличается от 10 кг на наименьшее возможное для данного набора число d. Какое максимальное значение может принимать число d для всевозможных наборов камней?

ВверхВниз   Решение


Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше?

ВверхВниз   Решение


Сумма положительных чисел x1, x2, ..., xn равна ½. Докажите, что  

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 591]      



Задача 116374

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10,11

Сравните числа  

Прислать комментарий     Решение

Задача 116570

Темы:   [ Алгебраические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 10,11

Даны положительные числа b и c. Докажите неравенство  (bc)2011(b + c)2011(cb)2011 ≥ (b2011c2011)(b2011 + c2011)(c2011b2011).

Прислать комментарий     Решение

Задача 30848

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10

Докажите, что  479 < 2100 + 3100 < 480.

Прислать комментарий     Решение

Задача 30881

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10

Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

Прислать комментарий     Решение

Задача 30908

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 6,7

Сумма положительных чисел x1, x2, ..., xn равна ½. Докажите, что  

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 591]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .