ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.
Пусть в выпуклом четырёхугольнике ABCD нет параллельных сторон. Обозначим через E и F точки пересечения прямых AB и DC, BC и AD соответственно (точка A лежит на отрезке BE, а точка C — на отрезке BF). Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда ED + BF = DF + BE.
В прямоугольном треугольнике проведена высота из вершины прямого угла. На этой высоте как на диаметре построена окружность. Известно, что эта окружность высекает на катетах отрезки, равные 12 и 18. Найдите катеты.
Прямоугольники $ABCD$ и $DEFG$ расположены так, что точка $D$ лежит на отрезке $BF$, а точки $B$, $C$, $E$, $F$ лежат на одной окружности (см. рисунок). Докажите, что $\angle ACE = \angle CEG$. Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$ В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь). |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 79]
Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?
В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).
В Долине Пяти Озёр есть пять одинаковых озёр, некоторые из которых соединены ручьями (на рис. пунктиром обозначены возможные "маршруты" ручьёв). Маленькие караси появляются на свет только в озере S. Пока карась взрослеет, он ровно четыре раз переходит из одного озера в другое по какому-нибудь ручью (карась выбирает ручей наудачу), а затем остается жить в том озере, в котором оказался. Из каждой тысячи карасей в среднем 375 остается жить в озере S, а остальные остаются жить в озере B, в других озерах не остается жить никто. Определите, сколько ручьёв в Долине Пяти Озёр.
Можно ли расположить все трёхзначные числа, не оканчивающиеся нулями, в последовательности так, чтобы последняя цифра каждого числа была равна первой цифре следующего за ним?
Али-Баба стоит с большим мешком монет в углу пустой прямоугольной пещеры размером m×n клеток, раскрашенных в шахматном порядке. Из любой клетки он может сделать шаг в любую из четырёх соседних клеток (вверх, вниз, вправо или влево). При этом он должен либо положить одну монету в этой клетке, либо забрать из неё одну монету, если, конечно, она не пуста. Может ли после прогулки Али-Бабы по пещере оказаться, что на чёрных клетках лежит ровно по одной монете, а на белых монет нет?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 79]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке