ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников? |
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 383]
Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.
На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.
а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|