ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов? Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 411]
В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов?
Пусть E – точка пересечения боковых сторон AD и BC трапеции ABCD, Bn+1 – точка пересечения прямых AnC и BD (A0 = A), An+1 – точка пересечения прямых EBn+1 и AB. Докажите, что AnB = AB/n+1.
Числовая последовательность A1, A2, ..., An, ... определена равенствами A1 = 1, A2 = – 1, An = – An–1 – 2An–2 (n ≥ 3).
Есть бесконечная в одну сторону клетчатая полоска, клетки которой пронумерованы натуральными числами, и мешок с десятью камнями. В клетках полоски камней изначально нет. Можно делать следующее: – перемещать камень из мешка в первую клетку полоски или обратно; – если в клетке с номером $i$ лежит камень, то можно переложить камень из мешка в клетку с номером $i + 1$ или обратно. Можно ли, действуя по этим правилам, положить камень в клетку с номером 1000?
Есть 100 внешне неразличимых монет трёх типов: золотые, серебряные и медные (каждый тип встречается хотя бы раз). Известно, что золотые весят по 3 г, серебряные – по 2 г, медные – по 1 г.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 411] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|