ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В соревнованиях участвуют 10 фигуристов. Соревнования судят трое судей следующим способом: каждый судья по-своему распределяет между фигуристами места (с первого по десятое), после чего победителем считается фигурист с наименьшей суммой мест. Какое наибольшее значение может принимать эта сумма у победителя (победитель единственный)?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 536]      



Задача 32011

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

В соревнованиях участвуют 10 фигуристов. Соревнования судят трое судей следующим способом: каждый судья по-своему распределяет между фигуристами места (с первого по десятое), после чего победителем считается фигурист с наименьшей суммой мест. Какое наибольшее значение может принимать эта сумма у победителя (победитель единственный)?

Прислать комментарий     Решение

Задача 32089

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 32120

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–".

Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
Прислать комментарий     Решение

Задача 32804

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

а) Какое максимальное количество слонов можно расставить на доске 1000 на 1000 так, чтобы они не били друг друга?
б) Какое максимальное количество коней можно расставить на доске 8×8 так, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 32827

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 7,8,9

Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
  1) Каждая команда сыграла с каждой ровно по одному разу.
  2) Каждая команда чередовала свои игры – то на плохой стороне, то на хорошей стороне двора.
    а) Удастся ли это сделать, если в турнире принимают участие 10 команд?
    б) Можно ли при этом составить расписание так, чтобы каждый день каждая команда играла ровно одну игру?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 536]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .