ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

"Крокодилом" называется фигура, ход которой заключается в прыжке на клетку, в которую можно попасть сдвигом на одну клетку по вертикали или горизонтали, а затем на N клеток в перпендикулярном направлении (при  N = 2  "крокодил" – это шахматный конь).
При каких N "крокодил" может пройти с каждой клетки бесконечной шахматной доски на любую другую?

   Решение

Задачи

Страница: << 251 252 253 254 255 256 257 >> [Всего задач: 1308]      



Задача 21979

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8

а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле?
б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?

Прислать комментарий     Решение

Задача 34993

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Теория множеств (прочее) ]
Сложность: 3
Классы: 8,9,10

Докажите, что нечётное число, являющееся произведением n различных простых сомножителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2n–1 различными способами.

Прислать комментарий     Решение

Задача 97962

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3
Классы: 8,9

Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

Прислать комментарий     Решение

Задача 32072

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9

"Крокодилом" называется фигура, ход которой заключается в прыжке на клетку, в которую можно попасть сдвигом на одну клетку по вертикали или горизонтали, а затем на N клеток в перпендикулярном направлении (при  N = 2  "крокодил" – это шахматный конь).
При каких N "крокодил" может пройти с каждой клетки бесконечной шахматной доски на любую другую?

Прислать комментарий     Решение

Задача 33138

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 6,7,8

На доске написаны числа
  а) 1, 2. 3, ..., 1997, 1998;
  б) 1, 2, 3, ..., 1998, 1999;
  в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?

Прислать комментарий     Решение

Страница: << 251 252 253 254 255 256 257 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .