Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Последовательность  x0, x1, x2, ...  определена следующими условиями:  x0 = 1,  x1 = λ,  для любого  n > 1  выполнено равенство

(α + β)nxn = αnxnx0 + αn–1βxn–1x1 + αn–2β2xn–2x2 + ... + βnx0xn.
Здесь α, β, λ – заданные положительные числа. Найдите xn и выясните, при каком n величина xn наибольшая.

Вниз   Решение


Пирог имеет форму правильного n-угольника, вписанного в окружность радиуса 1. Из середин сторон проведены прямолинейные надрезы длины 1. Доказать, что при этом от пирога будет отрезан какой-нибудь кусок.

ВверхВниз   Решение


Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

ВверхВниз   Решение


Найдите сумму (см. задачу 60424 про треугольник Лейбница):
  1/12 + 1/30 + 1/60 + 1/105 + ...
и обобщите полученный результат.

ВверхВниз   Решение


Основание призмы – квадрат со стороной a . Одна из боковых граней – также квадрат, другая – ромб с углом 60o . Найдите полную поверхность призмы.

ВверхВниз   Решение


Давным-давно страной Тарнией правил царь Ятианр. Чтобы тарнийцы поменьше рассуждали, он придумал для них простой язык. Его алфавит состоял всего из шести букв: А, И, Н, Р, Т, Я, но порядок их отличался от принятого в русском языке. Словами этого языка были все последовательности, использующие каждую из этих букв по одному разу. Ятианр издал полный словарь нового языка. В соответствии с алфавитом первым словом словаря оказалось "Тарния". Какое слово следовало в словаре за именем Ятианр?

ВверхВниз   Решение


В плоскости отмечена 101 точка, не все они лежат на одной прямой. Через каждую пару отмеченных точек красным карандашом проводится прямая. Докажите, что на плоскости существует точка, через которую проходит не меньше 11 красных прямых.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 126]      



Задача 32135

Темы:   [ Системы точек и отрезков (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3
Классы: 7,8,9

В плоскости отмечена 101 точка, не все они лежат на одной прямой. Через каждую пару отмеченных точек красным карандашом проводится прямая. Докажите, что на плоскости существует точка, через которую проходит не меньше 11 красных прямых.

Прислать комментарий     Решение

Задача 79426

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного l существует отрезок длины l, у которого оба конца одного цвета.
Прислать комментарий     Решение


Задача 35249

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны 2004 точки. Запишем все попарные расстояния между ними.
Докажите, что среди записанных чисел не менее тридцати различных.

Прислать комментарий     Решение

Задача 65450

Темы:   [ Целочисленные решетки (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

Есть 40 одинаковых шнуров. Если поджечь любой шнур с одной стороны, он сгорает, а если с другой – не горит. Вася раскладывает шнуры в виде квадрата (см. рисунок, каждый шнур – сторона клетки). Затем Петя расставляет 12 запалов. Сможет ли Вася разложить шнуры так, что Пете не удастся сжечь все шнуры?

Прислать комментарий     Решение

Задача 109527

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .