ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Фальшивомонетчик Вася изготовил четыре монеты достоинством 1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно. Но одну из этих монет он сделал некачественно – с неправильным весом. Как за два взвешивания на чашечных весах без гирек определить "неправильную" монету?

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 737]      



Задача 30453

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Двое по очереди ставят крестики и нолики в клетки доски 9 × 9. Начинающий ставит крестики, его соперник - нолики. В конце подсчитывается, сколько имеется строчек и столбцов, в которых крестиков больше, чем ноликов - это очки, набранные первым игроком. Количество строчек и столбцов, где ноликов больше - очки второго. Тот из игроков, кто наберет больше очков, побеждает.

Прислать комментарий     Решение

Задача 30454

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3
Классы: 7,8

Ладья стоит на поле a1. За ход разрешается сдвинуть ее на любое число клеток вправо или на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле h8.

Прислать комментарий     Решение


Задача 32819

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8

Фальшивомонетчик Вася изготовил четыре монеты достоинством 1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно. Но одну из этих монет он сделал некачественно – с неправильным весом. Как за два взвешивания на чашечных весах без гирек определить "неправильную" монету?
Прислать комментарий     Решение


Задача 32820

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет
а) 100;
б) 99;
в) 98?
Прислать комментарий     Решение


Задача 34924

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3

На шахматной доске стоит фишка. Двое по очереди передвигают фишку на соседнюю по стороне клетку. При этом запрещается ставить фишку на поле, где она уже побывала. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .