|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Детали полотна игрушечной железной дороги имеют форму четверти окружности радиуса R. Докажите, что последовательно присоединяя их концами так, чтобы они плавно переходили друг в друга, нельзя составить путь, у которого начало совпадает с концом, а первое и последнее звенья образуют тупик, изображенный на рис. В пространстве даны n точек общего положения (никакие три не лежат на одной прямой, никакие четыре – в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы n – 3 точки в пространстве ни взять, найдётся плоскость из проведённых, не содержащая ни одной из этих n – 3 точек. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 127]
нужно провести, чтобы вычеркнуть все отмеченные точки?
У правильного 5000-угольника покрашено 2001 вершина.
В пространстве даны n точек общего положения (никакие три не лежат на одной прямой, никакие четыре – в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы n – 3 точки в пространстве ни взять, найдётся плоскость из проведённых, не содержащая ни одной из этих n – 3 точек.
Среди вершин двух неравных икосаэдров можно выбрать шесть, являющихся вершинами правильного октаэдра.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 127] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|