Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В треугольнике ABC точка K на стороне AB и точка M на стороне AC расположены так, что  AK : KB = 3 : 2,  а  AM : NC = 4 : 5.
Найдите отношение, в котором прямая, проходящая через точку K параллельно стороне BC, делит отрезок BM.

Вниз   Решение


У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)

ВверхВниз   Решение


Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?

ВверхВниз   Решение


У треугольника ABC угол C — тупой. Докажите, что если точка X лежит на стороне AC, а точка Y — на стороне BC, то XY < AB.

ВверхВниз   Решение


Через точку на стороне треугольника проведена прямая, параллельная другой стороне, до пересечения с третьей стороной треугольника. Через полученную точку проведена прямая, параллельная первой стороне треугольника и т.д. Докажите, что
  а) если исходная точка сопадает с серединой стороны треугольника, то четвёртая точка, полученная таким способом, совпадёт с исходной;
  б) если исходная точка отлична от середины стороны треугольника, то седьмая точка, полученная таким способом, совпадёт с исходной.

ВверхВниз   Решение


На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что  AK² = LK·KM.

ВверхВниз   Решение


Около окружности описан n-угольник  A1...Anl — произвольная касательная к окружности, не проходящая через вершины n-угольника. Пусть ai — расстояние от вершины Ai до прямой lbi — расстояние от точки касания стороны  AiAi + 1 с окружностью до прямой l. Докажите, что:
а) величина  b1...bn/(a1...an) не зависит от выбора прямой l;
б) величина  a1a3...a2m - 1/(a2a4...a2m) не зависит от выбора прямой l, если n = 2m.

ВверхВниз   Решение


В 2n-угольнике (n нечетно)  A1...A2n, описанном около окружности с центром O, диагонали A1An + 1, A2An + 2,..., An - 1A2n - 1 проходят через точку O. Докажите, что и диагональ AnA2n проходит через точку O.

ВверхВниз   Решение


В квадрате 2000*2000 расставлены числа так, что в любом квадрате 2*2 сумма левого верхнего числа и правого нижнего числа равна сумме левого нижнего числа и правого верхнего числа. Докажите, что сумма чисел, стоящих в левом верхнем и правом нижнем углах квадрата 2000*2000, равна сумме чисел, стоящих в двух других углах.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



Задача 31365

Тема:   [ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8

Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?

Прислать комментарий     Решение


Задача 34891

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В квадрате 2000*2000 расставлены числа так, что в любом квадрате 2*2 сумма левого верхнего числа и правого нижнего числа равна сумме левого нижнего числа и правого верхнего числа. Докажите, что сумма чисел, стоящих в левом верхнем и правом нижнем углах квадрата 2000*2000, равна сумме чисел, стоящих в двух других углах.
Прислать комментарий     Решение


Задача 34901

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.
Прислать комментарий     Решение


Задача 35211

Тема:   [ Подсчет двумя способами ]
Сложность: 3-
Классы: 6,7,8

Обозначим через dk количество таких домов в Москве, в которых живет не меньше k жителей, и через cm - количество жителей в m-ом по величине населения доме. Докажите равенство c1+c2+c3+... = d1+d2+d3+... .
Прислать комментарий     Решение


Задача 60338

Тема:   [ Подсчет двумя способами ]
Сложность: 3-
Классы: 7,8

В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .