ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами.

Вниз   Решение


Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?

ВверхВниз   Решение


Докажите, что точка  m = 1/3 (a1 + a2 + a3)  является точкой пересечения медиан треугольника a1a2a3.

ВверхВниз   Решение


Основания равнобедренной трапеции равны a и b ( a>b ), боковая сторона равна l . Найдите радиус окружности, описанной около этой трапеции.

ВверхВниз   Решение


Среди поля проходит прямая дорога, по которой со скоростью 10 км/ч едет автобус. Укажите все точки на поле, из которых можно догнать автобус, если бежать с такой же скоростью.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



Задача 57165

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 2
Классы: 9

Пусть O — центр прямоугольника ABCD. Найдите ГМТ M, для которых  AM $ \geq$ OM, BM $ \geq$ OM, CM $ \geq$ OM и DM $ \geq$ OM.
Прислать комментарий     Решение


Задача 35034

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 2+
Классы: 8,9

Среди поля проходит прямая дорога, по которой со скоростью 10 км/ч едет автобус. Укажите все точки на поле, из которых можно догнать автобус, если бежать с такой же скоростью.
Прислать комментарий     Решение


Задача 35360

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 2+
Классы: 6,7

Поле с цветами разбито тропинками на равные квадраты. Садовники живут в вершинах всех квадратов. За каждым цветком ухаживают три ближайших садовника. Нарисуйте все цветы, за которыми ухаживает один из садовников.
Прислать комментарий     Решение


Задача 103735

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.

Прислать комментарий     Решение


Задача 57166

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 3
Классы: 9

Найдите ГМТ X, из которых можно провести касательные к данной дуге AB окружности.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .