ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья С. Белого "Разноцветная математика" Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На клетчатой бумаге отмечены произвольным образом 2000 клеток. Докажите, что среди них всегда можно выбрать не менее 500 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину). Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 161]
На каждой из клеток доски размером 9×9 находится фишка. Петя хочет передвинуть каждую фишку на соседнюю по стороне клетку так, чтобы снова в каждой из клеток оказалось по одной фишке. Сможет ли Петя это сделать?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 161] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|