ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что a = b. В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника. Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число. |
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 598]
а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?
На доске написаны две суммы:
1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999 Определите, какая из них больше (или они равны).
Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?
Заменить разные буквы разными цифрами, одинаковые — одинаковыми, а звёздочки — любыми так, чтобы получился правильный пример.
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 598]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке