ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана клетчатая доска размером а) 10×12; б) 9×10; в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия? Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 737]
Дана клетчатая доска размером а) 10×12; б) 9×10; в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?
Сломанный калькулятор выполняет только одну операцию "звездочка": a☆b = 1 – a : b.
а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|