ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?

   Решение

Задачи

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1221]      



Задача 35467

Темы:   [ Средние величины ]
[ Процессы и операции ]
[ Полуинварианты ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим.
Какое наименьшее число может оказаться на месте единицы?

Прислать комментарий     Решение

Задача 35499

Темы:   [ Турниры и турнирные таблицы ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?

Прислать комментарий     Решение

Задача 60362

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Даны 1002 различных числа, не превосходящих 2000. Докажите, что из них можно выбрать три таких числа, что сумма двух из них равна третьему. Останется ли это утверждение справедливым, если число 1002 заменить на 1001?

Прислать комментарий     Решение

Задача 60773

Темы:   [ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
[ Функция Эйлера ]
Сложность: 4-
Классы: 8,9,10

Найдите сумму всех правильных несократимых дробей со знаменателем n.

Прислать комментарий     Решение

Задача 60852

 [Метод спуска]
Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Докажите, что уравнения
  а)  8x4 + 4y4 + 2z4 = t4;
  б)  x² + y² + z² = 2xyz;
  в)  x² + y² + z² + u² = 2xyzu;
  г)  3n = x² + y²
не имеют решений в натуральных числах.

Прислать комментарий     Решение

Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .